Learn all about
Scientific Machine Learning
Full Day Tutorial on Monday, November 15, 2021
SuperComputing Conference 2021
Thanks for Attending! The videos to this tutorial can be found on RocketML Youtube
Scientific Machine Learning is a new frontier
What is Scientific Machine Learning
SciML is an approach where scientific based model constraints are introduced into Machine Learning algorithms, allowing prediction of future performance of complex multiscale, multiphysics systems using sparse, high-multi-fidelity, and heterogeneous data
Tutorial Overview
This full day tutorial is a comprehensive overview of building and deploying neural forward and inverse PDE solvers. We will discuss Physics-Informed Neural Networks (PINNs), which are usually dense networks producing point-wise solutions of PDEs, as well as CNN-based networks for producing full-field solutions of parametric PDEs, along with GAN-based networks that solve both forward and inverse ODEs.
We will work through several cloud scalable approaches including those for simulating across parameters, as well as distributed deep-learning to obtain high-fidelity solutions. This hands-on tutorial will provide the theoretical background, computational training and software tools for practitioners to rapidly deploy cloud scalable solutions for their forward and inverse PDE needs.
We will provide access to Microsoft Azure HPC clusters, and scripts for attendees to follow all demos at their own pace. We envision this tutorial to be of significant utility for academic and industry practitioners interested in the seamless scale-up of their approaches.